Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Microorganisms ; 12(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38399725

ABSTRACT

During the SARS-CoV-2 pandemic, the Dr. Risch medical group employed the multiplex TaqPathTM COVID-19 CE-IVD RT-PCR Kit for large-scale routine diagnostic testing in Switzerland and the principality of Liechtenstein. The TaqPath Kit is a widely used multiplex assay targeting three genes (i.e., ORF1AB, N, S). With emergence of the B.1.1.7 (Alpha) variant, a diagnostic flaw became apparent as the amplification of the S-gene target was absent in these samples due to a deletion (ΔH69/V70) in the Alpha variant genome. This S-gene target failure (SGTF) was the earliest indication of a new variant emerging and was also observed in subsequent variants such as Omicron BA.1 and BA4/BA.5. The Delta variant and Omicron BA.2 did not present with SGTF. From September 2020 to November 2022, we investigated the applicability of the SGTF as a surrogate marker for emerging variants such as B.1.1.7, B.1.617.2 (Delta), and Omicron BA.1, BA.2, and BA.4/BA.5 in samples with cycle threshold (Ct) values < 30. Next to true SGTF-positive and SGTF-negative samples, there were also samples presenting with delayed-type S-gene amplification (higher Ct value for S-gene than ORF1ab gene). Among these, a difference of 3.8 Ct values between the S- and ORF1ab genes was found to best distinguish between "true" SGTF and the cycle threshold variability of the assay. Samples above the cutoff were subsequently termed partial SGTF (pSGTF). Variant confirmation was performed by whole-genome sequencing (Oxford Nanopore Technology, Oxford, UK) or mutation-specific PCR (TIB MOLBIOL). In total, 17,724 (7.4%) samples among 240,896 positives were variant-confirmed, resulting in an overall sensitivity and specificity of 93.2% [92.7%, 93.7%] and 99.3% [99.2%, 99.5%], respectively. Sensitivity was increased to 98.2% [97.9% to 98.4%] and specificity lowered to 98.9% [98.6% to 99.1%] when samples with pSGTF were included. Furthermore, weekly logistic growth rates (α) and sigmoid's midpoint (t0) were calculated based on SGTF data and did not significantly differ from calculations based on comprehensive data from GISAID. The SGTF therefore allowed for a valid real-time estimate for the introduction of all dominant variants in Switzerland and Liechtenstein.

2.
Genome Med ; 16(1): 23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317199

ABSTRACT

BACKGROUND: Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes. METHODS: We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes. RESULTS: Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally. CONCLUSIONS: The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Multilocus Sequence Typing , Switzerland , Staphylococcal Infections/epidemiology , Molecular Epidemiology , Anti-Bacterial Agents/pharmacology
3.
Pathogens ; 12(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38133268

ABSTRACT

At the end of 2021, we observed an increase in N-gene target failures (NGTF) with the TaqPathTM COVID-19 CE-IVD RT-PCR Kit from Thermo Fisher Scientific (TaqPath). We subsequently used whole-genome sequencing (Oxford Nanopore Technology) to identify potential issues with N-gene PCR efficacy. Among 168,101 positive samples with a cycle threshold (CT) value <30 from August 2021 to May 2022, 194 specimens without N-gene amplification by PCR were identified (0.12%). Most NGTF samples originated from a wave of infection attributable to the Delta variant (B.1.617.2) and its sublineages. Sequencing revealed the nucleotide substitution G28922T (A217S) in 151 samples (88.8%). The substitution G215C, a hallmark mutation for Delta lineages, was concurrently present in all of these samples. Ten samples (5.9%) carried the deletion 28,913-28,918 (del214/215), eight samples (4.7%) the deletion 28,913-28,915 (del214) and one sample (0.6%) the deletion 28,892-28,930 (del207-219). Samples showing intact N-gene amplification by PCR lacked these specific mutations, but delayed-type amplification (i.e., partial or pNGTF) was attributable to the exclusive presence of A217S. As the N gene is a common target in many RT-PCR methods for SARS-CoV-2, an in-depth analysis of single-target failures using a combination with viral whole genome sequencing may allow for the identification of diagnostic flaws and eventual new variants.

5.
BMC Microbiol ; 22(1): 119, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501697

ABSTRACT

BACKGROUND: 16S rDNA-PCR for the identification of a bacterial species is an established method. However, the DNA extraction reagents as well as the PCR reagents may contain residual bacterial DNA, which consequently generates false-positive PCR results. Additionally, previously used methods are frequently time-consuming. Here, we describe the results obtained with a new technology that uses DNA-free reagents for automated DNA extraction and subsequent real time PCR using sterile clinical specimens. RESULTS: In total, we compared 803 clinical specimens using real time PCR and culturing. The clinical specimens were mainly of orthopedic origin received at our diagnostic laboratory. In 595 (74.1%) samples, the results were concordant negative, and in 102 (12.7%) the results were concordant positive. A total of 170 (21.2%) clinical specimens were PCR-positive, of which 62 (36.5% from PCR positive, 7.7% in total) gave an additional benefit to the patient since only the PCR result was positive. Many of these 62 positive specimens were strongly positive based on crossingpoint values (54% < Cp 30), and these 62 positive clinical specimens were diagnosed as medically relevant as well. Thirty-eight (4.2%) clinical specimens were culture-positive (25 of them were only enrichment culture positive) but PCR-negative, mainly for S. epidermidis, S. aureus and C. acnes. The turnaround times for negative specimens were 4 hours (automated DNA extraction and real time PCR) and 1 working day for positive specimens (including Sanger sequencing). Melting-curve analysis of SYBR Green-PCR enables the differentiation of specific and unspecific PCR products. Using Ripseq, even mixed infections of 2 bacterial species could be resolved. CONCLUSIONS: For endocarditis cases, the added benefit of PCR is obvious. The crucial innovations of the technology enable timely reporting of explicit reliable results for adequate treatment of patients. Clinical specimens with truly PCR-positive but culture-negative results represent an additional benefit for patients. Very few results at the detection limit still have to be critically examined.


Subject(s)
Bacteria , Staphylococcus aureus , Bacteria/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Humans , Indicators and Reagents , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/genetics
6.
J Glob Antimicrob Resist ; 28: 206-215, 2022 03.
Article in English | MEDLINE | ID: mdl-35085791

ABSTRACT

BACKGROUND: The spread of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) strains belonging to high-risk sequence types (STs) is a concern. For Switzerland, national data about the molecular features (especially the STs) of CP-Kp of human origin is not available. In veterinary clinics, ST11 and ST307 blaOXA-48-possessing K. pneumoniae strains have been recently reported. METHODS: We analysed a collection of 285 K. pneumoniae genomes (170 were CP-Kp) isolated in Switzerland from human and non-human sources during 2006-2020. Whole-genome sequencing, core genome phylogenies and public databases were used to present a detailed overview regarding carbapenemases, STs and plasmids. RESULTS: The top five STs were (main carbapenemase gene) ST512 (blaKPC-3), ST258 (blaKPC-2) and ST101 (blaOXA-48), consisting of strains of human origin only, and ST11 (blaOXA-48) and ST307 (blaOXA-48) strains isolated from human, animal and environmental sources. However, during 2016-2020, the main STs for CP-Kp were ST11 (17.6%), ST307 and ST101 (both 14.7%), whereas ST258 (5.9%) and ST512 (4.4%) significantly declined. Most carbapenemase genes were carried on plasmids already described. Core genome analysis revealed that ST11 K. pneumoniae of animal and human origin were closely related, whereas those of ST307 were distant. CONCLUSIONS: We described, for the first time, the features of the CP-Kp circulating in Switzerland in human and non-human settings. Our genomic analysis revealed that the emerging high-risk ST11 and ST307 lineages were often isolated from non-human settings. This study provided a baseline for further whole-genome sequencing-based One-Health surveillance of CP-Kp and emphasized the need for metadata to track dissemination routes between the different settings.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Animals , Bacterial Proteins , Clone Cells , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/veterinary , Klebsiella pneumoniae/genetics , Switzerland , beta-Lactamases
7.
Epidemics ; 37: 100480, 2021 12.
Article in English | MEDLINE | ID: mdl-34488035

ABSTRACT

BACKGROUND: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS: We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Switzerland/epidemiology , United Kingdom
8.
Ann Clin Microbiol Antimicrob ; 20(1): 52, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362393

ABSTRACT

BACKGROUND: The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different ß-lactams and fluoroquinolones. CASE PRESENTATION: A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. CONCLUSION: The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Ceftriaxone/pharmacology , Ciprofloxacin/pharmacology , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Adult , DNA, Bacterial/genetics , Gonorrhea/diagnosis , Gonorrhea/microbiology , Humans , Male , Microbial Sensitivity Tests , Neisseria gonorrhoeae/genetics , Phenotype , Polymerase Chain Reaction , Switzerland
9.
Front Cell Infect Microbiol ; 11: 681518, 2021.
Article in English | MEDLINE | ID: mdl-34141631

ABSTRACT

Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.


Subject(s)
Clostridioides difficile , Clostridium Infections , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Humans , Multilocus Sequence Typing , Polymerase Chain Reaction , Ribotyping , Switzerland , Whole Genome Sequencing
10.
Antimicrob Agents Chemother ; 65(9): e0072421, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34181480

ABSTRACT

The spread of plasmid-mediated carbapenemases within Klebsiella oxytoca is well-documented. In contrast, data concerning the closely related species Klebsiella grimontii are scarce. In fact, despite the recent report of the first blaKPC-2-producing K. grimontii, nothing is known about its clonality and antibiotic resistance patterns. In a retrospective search in our collection, we identified 2 blaVIM-positive K. oxytoca strains. Whole-genome sequencing with both Illumina and Nanopore indicated that our strains actually belonged to K. grimontii and were of sequence type 172 (ST172) and ST189. Moreover, the two strains were associated with 297-kb IncHI2/HI2A-pST1 and 90.6-kb IncFII(Yp) plasmids carrying blaVIM-1 together with mcr-9 and blaVIM-1, respectively. In the IncHI2/HI2A plasmid, blaVIM-1 was located in a class 1 integron (In110), while mcr-9 was associated with the qseC-qseB-like regulatory elements. Overall, this plasmid was shown to be very similar to those carried by other Enterobacterales isolated from food and animal sources (e.g., Salmonella and Enterobacter spp. detected in Germany and Egypt). The IncFII(Yp) plasmid was unique, and its blaVIM-1 region was associated with a rare integron (In1373). Mapping of In1373 indicated a possible origin in Austria from an Enterobacter hormaechei carrying a highly similar plasmid. Core-genome phylogenies indicated that the ST172 K. grimontii belonged to a clone of identical Swedish and Swiss strains (≤15 single nucleotide variants [SNVs] to each other), whereas the ST189 strain was sporadic. Surveillance of carbapenemase-producing K. oxytoca strains should be reinforced to detect and prevent the dissemination of new species belonging to the Klebsiella genus.


Subject(s)
Klebsiella , beta-Lactamases , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Enterobacter , Klebsiella/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Retrospective Studies , beta-Lactamases/genetics
11.
J Glob Antimicrob Resist ; 25: 310-314, 2021 06.
Article in English | MEDLINE | ID: mdl-33957287

ABSTRACT

OBJECTIVES: Klebsiella michiganensis is an emerging pathogen. Like Klebsiella pneumoniae, this species is able to acquire antibiotic resistance genes (ARGs) via mobile genetic elements. In this context, K. michiganensis isolates producing carbapenemases of KPC, NDM, IMP and OXA-48-like types have already been reported. Here we characterised a strain (BD-50-Km) isolated from a rectal swab of a Turkish patient hospitalised in Switzerland. METHODS: Species identification was initially performed using MALDI-TOF/MS. Antimicrobial susceptibility testing was done by the microdilution method. Whole-genome sequencing (WGS) was performed with both Illumina and Nanopore platforms and was used to confirm species identification, to characterise plasmids and to perform core-genome analyses. RESULTS: BD-50-Km was initially identified as Klebsiella oxytoca and showed reduced susceptibility to imipenem. However, WGS indicated that the isolate was actually K. michiganensis. BD-50-Km carried the blaVIM-1 gene associated with a rare class 1 integron (In87) located on a pST1 196 kb IncC plasmid. This plasmid shares its backbone with many other IncC plasmids found in different species (including five K. michiganensis), but not the same In87 and the remaining region harbouring various ARGs. BD-50-Km belongs to the novel ST342. Moreover, core-genome analysis (single nucleotide variant analysis) showed that BD-50-Km was not closely related to any K. michiganensis strains deposited in NCBI (n = 212), including the 38 so far reported as possessing carbapenemase genes. CONCLUSION: This is the first report of a blaVIM-possessing K. michiganensis clinical isolate. The spread of plasmid-mediated VIM carbapenemases in this emerging pathogen represents an additional threat to our therapeutic armamentarium.


Subject(s)
Klebsiella , beta-Lactamases , Humans , Klebsiella/genetics , Microbial Sensitivity Tests , Switzerland , beta-Lactamases/genetics
13.
Dis Markers ; 2021: 8810196, 2021.
Article in English | MEDLINE | ID: mdl-33532006

ABSTRACT

Several tests based on chemiluminescence immunoassay techniques have become available to test for SARS-CoV-2 antibodies. There is currently insufficient data on serology assay performance beyond 35 days after symptoms onset. We aimed to evaluate SARS-CoV-2 antibody tests on three widely used platforms. A chemiluminescent microparticle immunoassay (CMIA; Abbott Diagnostics, USA), a luminescence immunoassay (LIA; Diasorin, Italy), and an electrochemiluminescence immunoassay (ECLIA; Roche Diagnostics, Switzerland) were investigated. In a multigroup study, sensitivity was assessed in a group of participants with confirmed SARS-CoV-2 (n = 145), whereas specificity was determined in two groups of participants without evidence of COVID-19 (i.e., healthy blood donors, n = 191, and healthcare workers, n = 1002). Receiver operating characteristic (ROC) curves, multilevel likelihood ratios (LR), and positive (PPV) and negative (NPV) predictive values were characterized. Finally, analytical specificity was characterized in samples with evidence of the Epstein-Barr virus (EBV) (n = 9), cytomegalovirus (CMV) (n = 7), and endemic common-cold coronavirus infections (n = 12) taken prior to the current SARS-CoV-2 pandemic. The diagnostic accuracy was comparable in all three assays (AUC 0.98). Using the manufacturers' cut-offs, the sensitivities were 90%, 95% confidence interval [84,94] (LIA), 93% [88,96] (CMIA), and 96% [91,98] (ECLIA). The specificities were 99.5% [98.9,99.8] (CMIA), 99.7% [99.3,99.9] (LIA), and 99.9% [99.5,99.98] (ECLIA). The LR at half of the manufacturers' cut-offs were 60 (CMIA), 82 (LIA), and 575 (ECLIA) for positive and 0.043 (CMIA) and 0.035 (LIA, ECLIA) for negative results. ECLIA had higher PPV at low pretest probabilities than CMIA and LIA. No interference with EBV or CMV infection was observed, whereas endemic coronavirus in some cases provided signals in LIA and/or CMIA. Although the diagnostic accuracy of the three investigated assays is comparable, their performance in low-prevalence settings is different. Introducing gray zones at half of the manufacturers' cut-offs is suggested, especially for orthogonal testing approaches that use a second assay for confirmation.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Luminescent Measurements/methods , SARS-CoV-2/immunology , Adult , COVID-19 Testing , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity
14.
J Orthop Res ; 39(2): 333-338, 2021 02.
Article in English | MEDLINE | ID: mdl-33258495

ABSTRACT

Preoperative decolonization, especially of Staphylococcus aureus carriers, has been proposed to reduce periprosthetic joint infections (PJI), but the evidence-based consensus is still lacking and data on long-term outcomes is scarce. In a previous randomized, single-blinded trial, decolonization produced no significant reduction of surgical site infections in overall elective orthopedic surgery at 3-month follow-up. A 2-year follow-up was then performed to specifically detect the impact of decolonization on delayed-onset PJI (3-24 months after surgery). Between November 2015 and September 2017, 613 of 1318 recruited patients underwent prosthetic surgery. Individuals were allocated into either the S. aureus carrier group (34%, 207 of 613 patients) or the noncarrier group (406 of 613 patients), according to nasal swab screening results. Both groups were then randomized into intervention and control arms. In the S. aureus group, the intervention consisted of daily chlorhexidine showers and application of mupirocin nasal ointment twice a day for 5 days before surgery. In noncarriers, only chlorhexidine showers were prescribed. Sample size calculation was based on the initial trial for overall and not for the prosthetic surgery group. No PJI was found at 2 years in either the carrier or in the noncarrier group. Therefore, no definite conclusion about the efficacy of preoperative decolonization to reduce PJI can be drawn. PJI proportions in this study were lower than described in the literature (mostly around 0.3%). Despite the insufficient sample size, this trial is the largest randomized trial on decolonization with a long-term follow-up, and results may be helpful for future meta-analyses.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Infective Agents, Local/administration & dosage , Chlorhexidine/administration & dosage , Mupirocin/administration & dosage , Prosthesis-Related Infections/prevention & control , Administration, Intranasal , Aged , Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Female , Follow-Up Studies , Humans , Male , Middle Aged , Preoperative Care , Staphylococcal Infections/drug therapy
15.
J Clin Med ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317059

ABSTRACT

Pan-immunoglobulin assays can simultaneously detect IgG, IgM and IgA directed against the receptor binding domain (RBD) of the S1 subunit of the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 S1-RBD Ig). In this work, we aim to evaluate a quantitative SARS-CoV-2 S1-RBD Ig electrochemiluminescence immunoassay (ECLIA) regarding analytical, diagnostic, operational and clinical characteristics. Our work takes the form of a population-based study in the principality of Liechtenstein, including 125 cases with clinically well-described and laboratory confirmed SARS-CoV-2 infection and 1159 individuals without evidence of coronavirus disease 2019 (COVID-19). SARS-CoV-2 cases were tested for antibodies in sera taken with a median of 48 days (interquartile range, IQR, 43-52) and 139 days (IQR, 129-144) after symptom onset. Sera were also tested with other assays targeting antibodies against non-RBD-S1 and -S1/S2 epitopes. Sensitivity was 97.6% (95% confidence interval, CI, 93.2-99.1), whereas specificity was 99.8% (95% CI, 99.4-99.9). Antibody levels linearly decreased from hospitalized patients to symptomatic outpatients and SARS-CoV-2 infection without symptoms (p < 0.001). Among cases with SARS-CoV-2 infection, smokers had lower antibody levels than non-smokers (p = 0.04), and patients with fever had higher antibody levels than patients without fever (p = 0.001). Pan-SARS-CoV-2 S1-RBD Ig in SARS-CoV-2 infection cases significantly increased from first to second follow-up (p < 0.001). A substantial proportion of individuals without evidence of past SARS-CoV-2 infection displayed non-S1-RBD antibody reactivities (248/1159, i.e., 21.4%, 95% CI, 19.1-23.4). In conclusion, a quantitative SARS-CoV-2 S1-RBD Ig assay offers favorable and sustained assay characteristics allowing the determination of quantitative associations between clinical characteristics (e.g., disease severity, smoking or fever) and antibody levels. The assay could also help to identify individuals with antibodies of non-S1-RBD specificity with potential clinical cross-reactivity to SARS-CoV-2.

16.
Biomed Res Int ; 2020: 9878453, 2020.
Article in English | MEDLINE | ID: mdl-33224987

ABSTRACT

Knowledge of the sensitivities of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests beyond 35 days after the clinical onset of COVID-19 is insufficient. We aimed to describe positivity rate of SARS-CoV-2 assays employing three different measurement principles over a prolonged period. Two hundred sixty-eight samples from 180 symptomatic patients with COVID-19 and a reverse transcription polymerase chain reaction (RT-PCR) test followed by serological investigation of SARS-CoV-2 antibodies were included. We conducted three chemiluminescence (including electrochemiluminescence assay (ECLIA)), four enzyme-linked immunosorbent assay (ELISA), and one lateral flow immunoassay (LFIA) test formats. Positivity rates, as well as positive (PPVs) and negative predictive values (NPVs), were calculated for each week after the first clinical presentation for COVID-19. Furthermore, combinations of tests were assessed within an orthogonal testing approach employing two independent assays and predictive values were calculated. Heat maps were constructed to graphically illustrate operational test characteristics. During a follow-up period of more than 9 weeks, chemiluminescence assays and one ELISA IgG test showed stable positivity rates after the third week. With the exception of ECLIA, the PPVs of the other chemiluminescence assays were ≥95% for COVID-19 only after the second week. ELISA and LFIA had somewhat lower PPVs. IgM exhibited insufficient predictive characteristics. An orthogonal testing approach provided PPVs ≥ 95% for patients with a moderate pretest probability (e.g., symptomatic patients), even for tests with a low single test performance. After the second week, NPVs of all but IgM assays were ≥95% for patients with low to moderate pretest probability. The confirmation of negative results using an orthogonal algorithm with another assay provided lower NPVs than the single assays. When interpreting results from SARS-CoV-2 tests, the pretest probability, time of blood draw, and assay characteristics must be carefully considered. An orthogonal testing approach increases the accuracy of positive, but not negative, predictions.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Antibodies, Viral/blood , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods
17.
Clin Chem Lab Med ; 58(12): 2131-2140, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32866113

ABSTRACT

Objectives The sensitivity of molecular and serological methods for COVID-19 testing in an epidemiological setting is not well described. The aim of the study was to determine the frequency of negative RT-PCR results at first clinical presentation as well as negative serological results after a follow-up of at least 3 weeks. Methods Among all patients seen for suspected COVID-19 in Liechtenstein (n=1921), we included initially RT-PCR positive index patients (n=85) as well as initially RT-PCR negative (n=66) for follow-up with SARS-CoV-2 antibody testing. Antibodies were detected with seven different commercially available immunoassays. Frequencies of negative RT-PCR and serology results in individuals with COVID-19 were determined and compared to those observed in a validation cohort of Swiss patients (n=211). Results Among COVID-19 patients in Liechtenstein, false-negative RT-PCR at initial presentation was seen in 18% (12/66), whereas negative serology in COVID-19 patients was 4% (3/85). The validation cohort showed similar frequencies: 2/66 (3%) for negative serology, and 16/155 (10%) for false negative RT-PCR. COVID-19 patients with negative follow-up serology tended to have a longer disease duration (p=0.05) and more clinical symptoms than other patients with COVID-19 (p<0.05). The antibody titer from quantitative immunoassays was positively associated with the number of disease symptoms and disease duration (p<0.001). Conclusions RT-PCR at initial presentation in patients with suspected COVID-19 can miss infected patients. Antibody titers of SARS-CoV-2 assays are linked to the number of disease symptoms and the duration of disease. One in 25 patients with RT-PCR-positive COVID-19 does not develop antibodies detectable with frequently employed and commercially available immunoassays.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Real-Time Polymerase Chain Reaction , Serologic Tests , Adult , False Positive Reactions , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Time Factors , Young Adult
18.
Diagnostics (Basel) ; 10(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823852

ABSTRACT

While lateral flow test formats can be utilized with whole blood and low sample volumes, their diagnostic characteristics are inferior to immunoassays based on chemiluminescence immunoassay (CLIA) or enzyme-linked immunosorbent assay (ELISA) technology. CLIAs and ELISAs can be automated to a high degree but commonly require larger serum or plasma volumes for sample processing. We addressed the suitability of EDTA-anticoagulated whole blood as an alternative sample material for antibody testing against SARS-CoV-2 by electro-CLIA (ECLIA; Roche, Rotkreuz, Switzerland) and ELISA (IgG and IgA; Euroimmun, Germany). Simultaneously drawn venous serum and EDTA-anticoagulated whole blood samples from 223 individuals were included. Correction of the whole blood results for hematocrit led to a good agreement with the serum results for weakly to moderately positive antibody signals. In receiver-operating characteristic curve analysis, all three assays displayed comparable diagnostic accuracy (area under the curve (AUC)) using corrected whole blood and serum (AUCs: 0.97 for ECLIA and IgG ELISA; 0.84 for IgA ELISA). In conclusion, our results suggest that the investigated assays can reliably detect antibodies against SARS-CoV-2 in hemolyzed whole blood anticoagulated with EDTA. Correction of these results for hematocrit is suggested. This study demonstrates that the automated processing of whole blood for identification of SARS-CoV-2 antibodies with common ECLIA and ELISA methods is accurate and feasible.

19.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32718957

ABSTRACT

The Swiss Centre for Antibiotic Resistance (ANRESIS) has recently noted an increase of extended-spectrum cephalosporin-resistant (ESC-R) Shigella sonnei isolates nationwide (3.8% in 2016 versus 37.5% in 2019). To understand this phenomenon, we analyzed 25 representative isolates (of which 14 were ESC-R) collected in Switzerland during 2016 to 2019. Whole-genome sequencing was achieved using both the Illumina and the Nanopore platforms. Both ESC-R and extended-spectrum cephalosporin-susceptible isolates belonged to sequence type 152 (ST152). The ESC-R isolates carried blaCTX-M-3 in IncI1-pST57 (n = 5), blaCTX-M-15 in IncFII (F2:A-:B-) (n = 5), blaCTX-M-15 in IncI1-pST16, and blaCTX-M-27, blaCTX-M-55, or blaCTX-M-134 in other IncFII plasmids (n = 1 each). Plasmids having the same bla and Inc group exhibited high degrees of genetic identity to each other but also to plasmids previously reported in other Enterobacterales Core-genome analysis showed that there were 4 main clusters, each of which included strains that differed by <58 single nucleotide variants (SNVs) and that consisted of both blaCTX-M-positive and blaCTX-M-negative isolates. Moreover, most isolates belonging to the same cluster shared an identical core-genome sequence type (cgST). For instance, cluster 1 included 4 isolates of cgST113036, of which only 3 harbored the IncI1-pST57 blaCTX-M-3-positive plasmid. The 25 S. sonnei isolates were also subjected to phylogenetic comparison with deposited international strains. As a result, matching isolates (isolates that had the same cgST and that differed by <8 SNVs) have been reported in the United Kingdom, the United States, France, and the Netherlands. Overall, our results suggest that some common S. sonnei clusters can spread between continents and can be imported into other nations after international trips. Such clusters include, in part, isolates that do not possess blaESBL-harboring plasmids, indicating their tendency to acquire them from other Enterobacterales.


Subject(s)
Shigella sonnei , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Clone Cells , France , Microbial Sensitivity Tests , Netherlands , Phylogeny , Plasmids/genetics , Shigella sonnei/genetics , Switzerland , United Kingdom , beta-Lactamases/genetics
20.
Toxins (Basel) ; 12(4)2020 04 02.
Article in English | MEDLINE | ID: mdl-32252376

ABSTRACT

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Toxins/metabolism , Lung/microbiology , Respiratory Tract Infections/microbiology , Adaptive Immunity , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Disease Progression , Host-Pathogen Interactions , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...